Jérémy Blanc Mattias Hemmig Patrick Schaffter Francesco Veneziano

ALGEBRA Herbstsemester 2015

Übungen - Blatt 10

 \rightarrow 23.11.2015, 12:00

Aufgabe 1

Sei A ein faktorieller Ring und $p,q \in A$ zwei irreduzible Elemente. Beweisen Sie, dass die folgende Behauptungen äquivalent sind:

- 1. Das Ideal (p,q) = (p) + (q) ist ein Hauptideal.
- 2. Die Elemente p und q sind assoziiert (d.h. (p) = (q)) oder (p) + (q) = A.

Tipp: Wenn (p,q) ein Hauptideal ist, gibt es $a \in A$ mit (a) = (p,q). Es folgt, dass a|p und a|q. Was sind die Möglichkeiten für a?

Aufgabe 2

- 1. Sei *A* ein faktorieller Ring. Beweisen Sie, dass die folgenden Behauptungen äquivalent sind:
 - (a) Jedes Polynom $P \in A[X]$ vom Grad 1 ist irreduzibel.
 - (b) A ist ein Körper.
 - (c) A[X] ist ein Hauptidealring.

Tipp: Wenn A kein Körper ist, gibt es $a \in A$ irreduzibel. Beweisen Sie, dass das Ideal $(a,X) \subset A[X]$ kein Hauptideal ist (mit Aufgabe 1) und dass aX nicht irreduzibel ist.

- 2. Sei K ein Körper. Beweisen Sie, dass die folgenden Behauptungen äquivalent sind:
 - (a) Jedes irreduzible Polynom $P \in A[X]$ ist vom Grad 1.
 - (b) Jedes Polynom $P \in K[X]$ vom Grad ≥ 1 hat eine Nullstelle in K (d.h. es gibt $x \in K$ mit P(x) = 0).

Man sagt in diesem Fall, dass K algebraisch abgeschlossen ist.

Aufgabe 3

Wir schreiben $\xi = \sqrt[3]{2} \in \mathbb{R} \subset \mathbb{C}$.

Beweisen Sie dass $\mathbb{Z}[\xi] = \{a + b\xi + c\xi^2 \mid a, b, c \in \mathbb{Z}\}$ und dass $\mathbb{Z}[\xi]$ isomorph zu $\mathbb{Z}[X]/(X^3 - 2)$ ist.

Aufgabe 4

Sei A ein Integritätsring.

Beweisen Sie, dass die folgenden Behauptungen äquivalent sind:

- 1. A ist ein lokaler Hauptidealring, der kein Körper ist.
- 2. A ist ein Hauptidealring, der ein einziges nicht-null Primideal enthält.
- 3. A ist ein faktorieller Ring mit einem einzigen irreduziblen Element, bis auf Einheiten.

Tipp: $2 \Rightarrow 1$: Beweisen Sie, dass das einzige nicht-null Primideal das einzige Maximalideal ist. $1 \Rightarrow 3$: Wenn Sie das Maximalideal als (a) schreiben, können Sie beweisen, dass a das einzige irreduzible Element ist, bis auf Einheiten. $3 \Rightarrow 2$: Sei a das einzige irreduzible Element. Beweisen Sie, dass alle nicht-null Ideale der Form (a^m) , $m \geq 0$, sind.

Wenn eine (oder alle) von diesen Behauptung erfüllt ist, sagt man dass A ein diskreter Bewertungsring ist.

Aufgabe 5

Sei A ein diskreter Bewertungsring (vgl. Aufgabe 4) und $u \in A$ ein irreduzibles Element.

- 1. Beweisen Sie, dass jedes $x \in A \setminus \{0\}$ gleich $x = au^m$ ist, wo $a \in A^*$ und $m \ge 0$. Tipp: Benutzen Sie die dritte Bedingung.
- 2. Beweisen Sie, dass A ein euklidischer Ring ist mit der folgenden euklidischen Funktion: $\delta(au^m) = m$, wenn m > 0 und $a \in A^*$.