ALGEBRAISCHE GEOMETRIE – II Frühlingsemester 2017

Übungen - Blatt 8

 \rightarrow 28.04.2017 (12h)

Wir arbeiten über ein Körper k, algebraisch abgeschlossen und schreiben

$$\mathbb{A}^n = \mathbb{A}^n(\mathbf{k}), \mathbb{P}^n = \mathbb{P}^n(\mathbf{k})$$

für jedes $n \ge 1$.

Aufgabe 1

Sei $\mathfrak{a} \subset \mathbf{k}[X_0, X_1, X_2, X_3]$. Finden Sie dim(\mathfrak{a}):

1.
$$\mathfrak{a} = (X_0^2 + X_1^2 + X_2^2 + X_3^2, X_0^2 + 2X_1^2 + 3X_2^2 + 4X_3^2);$$

2.
$$\mathfrak{a} = (X_0, X_0^3 X_1);$$

3.
$$\mathfrak{a} = (X_0X_1, X_1X_2, X_2X_3)$$
.

Aufgabe 2

Seien $f,g \in \mathbf{k}[X_0,X_1,X_2,X_3]$ homogen vom Grad $a \ge 1$ und $b \ge 1$ und irreduzibel, so dass f und g nicht kollinear sind. Finden Sie das Hilbertsches Polynom $\chi_{\mathfrak{a}} \in \mathbb{Q}[X]$, wo $\mathfrak{a} = (f,g)$. *Tipp: Sie sollten zuerst* $\chi_{(f)}$ *rechnen und dann Lemma 7.13 benutzen.*

Aufgabe 3

Seien $Y_0, \dots, Y_d \subset \mathbb{P}^n$ irreduzible algebraische Teilmenge, so dass

$$Y_0 \subsetneq Y_1 \subsetneq \cdots \subsetneq Y_d$$

Beweisen Sie, dass $d \le n$. Ist d = n möglich? Tipp: Sie sollten Lemma 7.24(2) benutzen

Aufgabe 4

Gleiche Frage als für Aufgabe 3, aber wo \mathbb{P}^n ersetzt mit $Y \subset \mathbb{P}^m$ abgeschlossen und irreduzibel, so dass $\dim(I(Y)) = n$.