GRUPPENKOHOMOLOGIE

Frühlingsemester 2013

Übungen - Blatt 2

Aufgabe 1

Sei G die Gruppe mit zwei Elementen, die auf einer Gruppe A operiert. Sei $\sigma \in G$ das nicht triviale Element.

Beweisen Sie die folgenden Behauptungen:

- 1. Die Menge $Z^1(G,A)$ ist bijektiv zu $\{a \in A \mid a\sigma(a) = 1\}$, und diese Bijektion schickt $B^1(G,A)$ auf $\{b^{-1}\sigma(b) \mid b \in A\}$.
- 2. Die Gruppe G operiert auf $(\mathbb{C},+)$ und (\mathbb{C}^*,\cdot) , mit $\sigma(x)=\bar{x}$ für jedes $x\in\mathbb{C}$. Die Gruppen $H^1(G,\mathbb{C})$ und $H^1(G,\mathbb{C}^*)$ sind trivial.
- 3. Die Gruppe G operiert auf jede Gruppe A, mit $\sigma(a) = a^{-1}$. Mit dieser Aktion gibt
 - (a) $H^1(G, \mathbb{C}^*)$ ist trivial.
 - (b) $H^1(G, \mathbb{Q}^*)$ ist unendlich.
 - (c) Für jede endliche abelsche Gruppe A gilt $H^1(G,A) = \{1\}$ genau wenn $|A| \equiv 1 \pmod{2}$.

Aufgabe 2

Sei G eine zyklische Gruppe von endlich Ordnung n, erzeugt von $\xi \in G$. Die Gruppe G operiert auf einer Gruppe A.

Beweisen Sie die folgenden Behauptungen:

- 1. Die Menge $Z^1(G,A)$ ist bijektiv zu $\{a \in A \mid a\xi(a)\xi^2(a)\cdots\xi^{n-1}(a)=1\}$, und diese Bijektion schickt $B^1(G,A)$ auf $\{b^{-1}\xi(b)\mid b\in A\}$.
- 2. Wir nehmen $A = (\mathbb{C}[x], +)$ (Polynomen über \mathbb{C}), und die Aktion $\xi(P(x)) = P(\zeta x)$, wo $\zeta = e^{2i\pi/n}$. Dann gilt $H^1(G, A) = \{1\}$.

Tipp: Schreiben Sie ein Polynom $P(x) \in \mathbb{C}[x]$ von Grad d als $P = P_1 + \cdots + P_d$, wo P_i homogen von Grad i ist. Es gilt $\xi(P) = \xi(P_1) + \cdots + \xi(P_d)$.

Aufgabe 3

Sei $G = \{1, \sigma\}$ die Gruppe mit zwei Elementen, die auf \mathbb{C}^n und $(\mathbb{C}^*)^n$ operiert, durch $\sigma(x_1, \ldots, x_n) = (\overline{x_1}, \ldots, \overline{x_n})$.

Beweisen Sie, dass $H^1(G, \mathbb{C}^n)$ und $H^1(G, (\mathbb{C}^*)^n)$ trivial sind.

Tipp: Schreiben Sie exakte Folgen und benützen Sie Aufgabe 1 für n = 1.