KOMMUTATIVE ALGEBRA Frühlingssemester 2016

Universität

Basel

Mathematik BASEL

Übungen - Blatt 3

 \rightarrow 14.03.2016, 12:00

Aufgabe 1

Sei *A* ein Ring, *M* ein *A*-Modul und $M_1, M_2 \subset M$. Berechnen Sie $M_1 + M_2$ und $M_1 \cap M_2$.

1.
$$A = \mathbb{Z}, M = \mathbb{Z} \times \mathbb{Z}, M_1 = \mathbb{Z} \times 2\mathbb{Z}, M_2 = 3\mathbb{Z} \times 2\mathbb{Z}$$
.

2.
$$A = \mathbb{Z}, M = \mathbb{Z} \times \mathbb{Z}, M_1 = \{(a,b) \in M \mid 2a = b\}, M_2 = \{(a,b) \in M \mid 5a = 7b\}.$$

3.
$$A = \mathbb{Z}, M = \mathbb{Z} \times \mathbb{Q}, M_1 = \{(a,b) \in M \mid 2a = b\}, M_2 = \{(2a, \frac{b}{5^i7^j}) \in M \mid a,b \in \mathbb{Z}, i,j \in \mathbb{N}\}.$$

Aufgabe 2

Sei *A* ein Ring und *M* ein *A*-Modul. Seien *N*, *P* zwei Untermoduln von *M*.

- 1. Beweisen Sie, dass $Ann(P+N) = Ann(P) \cap Ann(N)$.
- 2. Beweisen Sie, dass $(N:P) = \{a \in A \mid aP \subset N\}$ ein Ideal von A ist, so dass (N:P) = Ann((N+P)/N).

Aufgabe 3

Sei A ein Ring, M ein A-Modul und $\varphi: M \to M$ ein A-Modulhomomorphismus. Zeigen Sie, dass M ein A[X]-Modul ist, wobei die Struktur wie folgt definiert ist:

$$\left(\sum_{i=0}^{n} a_i X^i\right) \cdot m = \sum_{i=0}^{n} a_i \varphi^i(m),$$

für $m \in M$ und $\sum_{i=0}^{n} a_i X^i \in A[X]$ (jedes a_i liegt in A), wobei $\varphi^i = \underbrace{\varphi \circ \cdots \circ \varphi}_{i \text{ mal}}$ und φ^0 die Identität ist.

Aufgabe 4

Sei A ein Hauptidealring und sei M ein endlicher A-Modul, so dass $Ann(m) = \{0\}$ für jedes $m \in M \setminus \{0\}$ (man sagt, dass M torsionsfrei ist). Zeigen Sie, dass M frei ist.

Tipp: Zeigen Sie, dass M einen maximalen freien Untermodul $L \subset M$ enthält. Beweisen Sie dann, dass $aM \subset L$ für ein $a \in A \setminus \{0\}$.

Aufgabe 5

- 1. Sei A ein Ring und $\mathfrak{a} \subset A$ ein Ideal, so dass $\mathfrak{a} \neq 0$. Beweisen Sie, dass A/\mathfrak{a} kein freier A-Modul ist.
- 2. Finden Sie einen Ring A und einen endlichen A-Modul M, der einen unendlichen A-Untermodul N enthält.

Tipp: A muss kein Hauptidealring sein. Es ist möglich M = A zu wählen.

Aufgabe 6

Sei A ein Ring.

- 1. Für beliebige A-Moduln M und N_i ($i \in I$), beweisen Sie, dass $\bigoplus_{i \in I} \operatorname{Hom}(M, N_i)$ isomorph zu einem Untermodul von $\operatorname{Hom}(M, \bigoplus_{i \in I} N_i)$ ist.
- 2. Beweisen Sie, dass $\operatorname{Hom}(M, \bigoplus_{i \in I} N_i)$ und $\bigoplus_{i \in I} \operatorname{Hom}(M, N_i)$ nicht immer isomorph sind.
- 3. Was können wir sagen, wenn *M* ein endlicher *A*-Modul ist?