Übungen - Blatt 8

 \rightarrow 25.04.2016, 12:00

Aufgabe 1

Sei

$$0 \longrightarrow M_1 \xrightarrow{\varphi_1} M_3 \xrightarrow{\varphi_2} M_4 \longrightarrow 0$$

$$\downarrow f_1 \qquad \downarrow f_2 \qquad \downarrow f_3$$

$$0 \longrightarrow N_1 \xrightarrow{\psi_1} N_2 \xrightarrow{\psi_2} N_3 \longrightarrow 0$$

ein kommutatives Diagramm von A-Modulhomomorphismen, wo beide Zeilen exakte Folgen sind.

Beweisen Sie die folgenden Aussagen (mit dem Schlangenlemma):

- 1. f_1, f_3 injektiv $\Rightarrow f_2$ ist injektiv.
- 2. f_1, f_3 surjektiv $\Rightarrow f_2$ ist surjektiv.
- 3. f_1, f_3 bijektiv $\Rightarrow f_2$ ist bijektiv.
- 4. f_1, f_2 bijektiv $\Rightarrow f_3$ ist bijektiv.
- 5. f_2 , f_3 bijektiv $\Rightarrow f_1$ ist bijektiv.

Aufgabe 2 (Fünflemma)

Sei

$$M_{1} \xrightarrow{\varphi_{1}} M_{2} \xrightarrow{\varphi_{2}} M_{3} \xrightarrow{\varphi_{3}} M_{4} \xrightarrow{\varphi_{4}} M_{5}$$

$$\downarrow f_{1} \qquad \downarrow f_{2} \qquad \downarrow f_{3} \qquad \downarrow f_{4} \qquad \downarrow f_{5}$$

$$N_{1} \xrightarrow{\psi_{1}} N_{2} \xrightarrow{\psi_{2}} N_{3} \xrightarrow{\psi_{3}} N_{4} \xrightarrow{\psi_{4}} N_{5}$$

ein kommutatives Diagramm von A-Modulhomomorphismen, wo beide Zeilen exakte Folgen sind.

Beweisen Sie die folgenden Aussagen:

- 1. f_1 surjektiv, f_2 , f_4 injektiv $\Rightarrow f_3$ ist injektiv.
- 2. f_5 injektiv, f_2, f_4 surjektiv $\Rightarrow f_3$ ist surjektiv. Tipp: Beweisen Sie die Existenz eines kommutativen Diagrammes der Form

$$\begin{array}{ccc}
\operatorname{Coker}(\varphi_{1}) & \longrightarrow M_{3} & \longrightarrow \operatorname{Ker}(\varphi_{4}) & \longrightarrow 0 \\
\downarrow f'_{2} & & \downarrow f_{3} & & \downarrow f_{4}|_{\operatorname{Ker}(\varphi_{4})} \\
0 & \longrightarrow \operatorname{Coker}(\psi_{1}) & \longrightarrow N_{3} & \longrightarrow \operatorname{Ker}(\psi_{4}),
\end{array}$$

und benützen Sie das Schlangenlemma.

3. f_1 surjektiv, f_5 injektiv, f_2 , f_4 bijektiv $\Rightarrow f_3$ ist bijektiv.

Aufgabe 3

Sei

$$M_{1} \xrightarrow{\varphi_{1}} M_{2} \xrightarrow{\varphi_{2}} M_{3} \xrightarrow{\varphi_{3}} M_{4} \xrightarrow{\varphi_{4}} M_{5}$$

$$\downarrow f_{1} \qquad \downarrow f_{2} \qquad \downarrow f_{3} \qquad \downarrow f_{4} \qquad \downarrow f_{5}$$

$$N_{1} \xrightarrow{\psi_{1}} N_{2} \xrightarrow{\psi_{2}} N_{3} \xrightarrow{\psi_{3}} N_{4} \xrightarrow{\psi_{4}} N_{5}$$

ein kommutatives Diagramm von A-Modulhomomorphismen, wo beide Zeilen exakte Folgen sind. Nach dem Fünflemma weiss man, dass f_3 ein Isomorphismus ist, wenn die folgenden Behauptungen erfüllt sind:

(1) f_1 surjektiv, (2) f_2 injektiv, (3) f_2 surjektiv, (4) f_4 injektiv, (5) f_4 surjektiv, (6) f_5 injektiv. Beweisen Sie, dass jede Behauptung notwendig ist.

Für (6), nehmen wir

$$0 \xrightarrow{\varphi_1} 0 \xrightarrow{\varphi_2} \mathbb{Z} \xrightarrow{\varphi_3} \mathbb{Z} \xrightarrow{\varphi_4} \mathbb{Z}/2\mathbb{Z}$$

$$\downarrow f_1 \qquad \downarrow f_2 \qquad \downarrow f_3 \qquad \downarrow f_4 \qquad \downarrow f_5$$

$$0 \xrightarrow{\psi_1} 0 \xrightarrow{\psi_2} \mathbb{Z} \xrightarrow{\psi_3} \mathbb{Z} \xrightarrow{\psi_4} 0$$

wo $\varphi_3(x) = f_3(x) = 2x$, $f_4(x) = \psi_3(x)$ und $\varphi_4(x) = [x]$ für jedes $x \in \mathbb{Z}$. Bemerken Sie, dass f_3 kein Isomorphismus ist, und dass (1), (2), (3) (4) und (5) erfüllt sind. Machen Sie gleich für (1), (2), (3), (4), (5).

Aufgabe 4

Sei $A = A_1 \times A_2$, wo A_1, A_2 zwei Ringe sind, die nicht null sind.

Beweisen Sie, dass $M_1 = A_1 \times \{0\} \subset A$ und $M_2 = \{0\} \times A_2 \subset A$ zwei projektive A-Moduln sind, die nicht frei sind.

Aufgabe 5

Ist der A-Modul M projektiv?

1.
$$A = \mathbb{Z}, M = \mathbb{Q}/\mathbb{Z}$$

2.
$$A = \mathbb{Z}, M = \bigoplus_{i \in \mathbb{N}} \mathbb{Z}$$

$$3^*$$
. $A = \mathbb{Z}, M = \prod_{i \in \mathbb{N}} \mathbb{Z}$

4.
$$A = \mathbb{Z}/24\mathbb{Z}, M = \mathbb{Z}/3\mathbb{Z}$$
.

5.
$$A = \mathbb{Z}/27\mathbb{Z}, M = \mathbb{Z}/3\mathbb{Z}$$
.

Aufgabe 6

Sei A ein Ring, M ein endlicher A-Modul und $\varphi: M \to A^n$ ein surjektiver A-Modulhomomorphismus. Beweisen Sie, dass $Ker(\varphi)$ ein endlicher A-Modul ist.