KOMMUTATIVE ALGEBRA I Herbstsemester 2011

Universität

Basel

Mathematik BASEL

Übungen - Blatt 12

 \rightarrow 12.12.2011

Aufgabe 1*

Finden Sie ein Integritätsring A und ein A-Modul M, so dass M teilbar ist, aber nicht injektiv ist.

Aufgabe 2

Ist der Ring A noethersch?

- 1. $A = \mathbb{Z}$;
- 2. $A = \mathbb{R}$.
- 3. $A = \mathbb{Z}[X_1, X_2, X_3...].$
- 4. $A = \{ \text{Ganzen Funktionen } \mathbb{C} \to \mathbb{C} \}.$
- 5. $A = \{ \text{Stetig Funktionen } [0,1] \to \mathbb{R} \}.$

Aufgabe 3

Wei *A* ein noetherscher Ring ist, ist jeder Unterring $B \subset A$ noethersch?

Aufgabe 4

Sei A ein Ring. Die folgenden Behauptungen sind äquivalent:

- 1. A ist noethersch;
- 2. Für jede Folge $(M_i)_{i \in I}$ von injektive *A*-Moduln ist $\bigoplus_{i \in I} M_i$ injektiv.

Beweisen Sie $(1) \Rightarrow (2)$.

 $(2) \Rightarrow (1)$ wird in Vorlesung bewiesen sein.

Aufgabe 5

Was sind diese Tensorprodukten isomorph zu?

- 1. $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Z}/2\mathbb{Z}$
- 2. $\mathbb{Q} \otimes_{\mathbb{Z}} (\mathbb{Z}/4\mathbb{Z} \times \mathbb{Z})$
- 3. $\mathbb{Q}/\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Q}/\mathbb{Z}$.