KOMMUTATIVE ALGEBRA I Herbstsemester 2011

Universität

Basel

Mathematik BUNSEL

Übungen - Blatt 5

 \rightarrow 24.10.2011

Aufgabe 1

Sei $p \in \mathbb{Z}$ eine Primzahl. Zeigen Sie, dass $\mathbb{Z}_{(p)} = \left\{ \frac{a}{b} \mid a, b \in \mathbb{Z}, p \nmid b \right\}$ ein Hauptidealring ist, mit nur ein Primelement (bis auf Assoziertheit).

Aufgabe 2

Sei A ein Ring, $S \subset A$ eine multiplikative Menge und \mathfrak{a} ein Ideal. Man schreibt $S' = \{[s] \mid s \in S\} \subset A/\mathfrak{a}$. Beweisen Sie, dass $(S')^{-1}(A/\mathfrak{a})$ und $(S^{-1}A)/(S^{-1}\mathfrak{a})$ isomorph sind.

Aufgabe 3

Sei A ein lokaler Hauptidealring, mit Maximalideal m.

- 1. Beweisen Sie, dass $\forall a \in A, a \neq 0, \exists n \in \mathbb{N} \text{ mit } a \in \mathfrak{m}^n, a \notin \mathfrak{m}^{n+1} \text{ (dabei ist } \mathfrak{m}^0 = A, \mathfrak{m}^1 = \mathfrak{m}, \mathfrak{m}^{k+1} = \mathfrak{m} \cdot \mathfrak{m}^k)$. Man schreibt v(a) = n und $v(0) = \infty$.
- 2. Beweisen Sie, dass v, via $v(\frac{a}{b}) = v(a) v(b)$, eine Valuation auf dem Quotientenkörper Q(A) induziert.

Eine Valuation ist eine Funktion $v: Q(A) \to \mathbb{Z} \cup \infty$ mit v(xy) = v(x) + v(y), $v(x+y) \ge \min\{v(x), v(y)\}$.

3. Beweisen Sie, dass $v^{-1}(\mathbb{N}) = A$.

Aufgabe 4

Für $m, n \in \mathbb{N}$ sei $A = \mathbb{Z}/m\mathbb{Z}$ und $S \subset A$ die multiplikative Menge $\{[n^k] \in A \mid k = 1, 2, \dots\}$. Zu was ist $S^{-1}A$ isomorph, wenn

- 1. m = 6, n = 2;
- 2. m = 8, n = 2;
- 3. m = 9, n = 4?

Aufgabe 5

Sei A ein reduzierter Ring (d.h. Nil(A) = 0), der nur endlich viele minimale Primideale, $\mathfrak{p}_1, \ldots, \mathfrak{p}_n$, besitzt. Sei S die Menge seiner Nichtnullteiler.

Zeigen Sie, dass
$$S = A \setminus \bigcup_{i=1}^n \mathfrak{p}_i$$
 und $S^{-1}A \cong \prod_{i=1}^n Q(A/\mathfrak{p}_i)$.