KOMMUTATIVE ALGEBRA I Herbstsemester 2011

Universität

Basel

Mathematik BASEL

Übungen - Blatt 6

 \rightarrow 31.10.2011

Aufgabe 1

Sei A ein Ring, und $\mathfrak{p},\mathfrak{q}$ zwei Primidealen von A mit $\mathfrak{p} \subset \mathfrak{q}$. Man definiert $\mathfrak{q}/\mathfrak{p}$ als die Menge $\{[x] \in A/\mathfrak{p} \mid x \in \mathfrak{q}\}$. Bemerken Sie, dass $\mathfrak{q}/\mathfrak{p}$ ein Primideal von A/\mathfrak{q} ist, und zeichen Sie, dass $(A/\mathfrak{p})_{\mathfrak{q}/\mathfrak{p}}$ isomorph zu $A_{\mathfrak{q}}/\mathfrak{p}A_{\mathfrak{q}}$ ist.

Aufgabe 2

Sei A ein Ring und $S \subset A$ eine multiplikative Menge. Beweisen Sie, dass

$$Nil(S^{-1}A) = S^{-1}Nil(A).$$

Aufgabe 3

Sei A ein Ring. Zeigen Sie, dass die folgenden Behauptungen äquivalent sind:

- 1. A ist reduziert;
- 2. $A_{\mathfrak{p}}$ ist reduziert, für jede Primideal $\mathfrak{p} \subset A$.

Aufgabe 4

Sei A ein Ring. Ein Ideal $\mathfrak{a} \subsetneq A$ heisst primär wenn $ab \in \mathfrak{a}, a \notin \mathfrak{a} \Rightarrow b \in \sqrt{a}$, für jede $a, b \in A$.

- 1. Beweisen Sie, dass jede Primideal primär ist.
- 2. Sei $\mathfrak{q} \subset A$ ein Ideal. Zeigen Sie, dass die folgenden Behauptungen äquivalent sind:
 - (a) q ist primär;
 - (b) $Nil(A/\mathfrak{q}) = NT(A/\mathfrak{q})$.

(Es gibt einen neuen Beweis zu (1)).

3. Sei $\mathfrak{m} \subset A$ ein Maximalideal. Beweisen Sie, dass \mathfrak{m}^k primär ist, für jede $k \geq 1$.

Aufgabe 5

Sei A ein Ring.

- 1. Sei $\mathfrak{q} \subset A$ ein Primärideal. Beweisen Sie, dass $\sqrt{\mathfrak{q}}$ prim ist.
- 2. Sei $\mathfrak{q} \subset A$ ein Ideal, so dass $\sqrt{\mathfrak{q}}$ maximal ist. Beweisen Sie, dass \mathfrak{q} primär ist.
- 3. Sei K ein Körper, A = K[x,y] und $\mathfrak{a} = (x,y^2) \subset A$. Beweisen Sie, dass \mathfrak{a} primär ist, und berechnen Sie $\sqrt{\mathfrak{q}}$. Zeigen Sie, dass ein Primärideal nicht immer ein Potenz von ein Primideal ist.
- 4. Sei $\mathfrak{q} \subset A$ ein Ideal, so dass $\sqrt{\mathfrak{q}}$ prim ist. Ist immer \mathfrak{q} primär?