GEOMETRIE DER PROJEKTIVEN ALGEBRAISCHEN FLÄCHEN

Übungen - Blatt 11

 \rightarrow 20.05.2011

Aufgabe 1

Sei $\pi: X \to \mathbb{P}^2$ die Aufblasung von den Punkten p_1, \dots, p_5 , wo

$$p_1 = (1:0:0), p_2 = (0:1:0), p_3 = (0:0:1), p_4 = (1:1:1), p_5 = (-1:1:2).$$

Für $i=2,\ldots,5$, sei $C_i\subset\mathbb{P}^2$ die Gerade durch p_1 und p_i , und sei $C_1\subset\mathbb{P}^2$ die Quadrik durch p_1,\ldots,p_5 .

- 1. Beweisen Sie die Existenz von ein Morphismus $\eta: X \to \mathbb{P}^2$, der die Kontraktion von $\tilde{C}_1, \dots, \tilde{C}_5$ ist.
- 2. Sei $\varphi \colon \mathbb{P}^2 \dashrightarrow \mathbb{P}^2$ die birationale Transformation $\varphi = \eta \circ (\pi)^{-1}$. Was ist das Bild von eine allgemeine Gerade durch p_1 ?
- 3. Welche Grad hat das Linearsystem von φ ?
- 4. Finden Sie Polynomen $P_2, P_3 \in \mathbb{C}[x, y, z]$ homogen von Grad 2 und 3 so dass φ durch

$$(x:y:z) \dashrightarrow (P_3(x,y,z):yP_2(x,y,z):zP_2(x,y,z))$$

gegeben ist, und so dass $\varphi = \varphi^{-1}$.