# GEOMETRIE DER PROJEKTIVEN ALGEBRAISCHEN FLÄCHEN



## Übungen - Blatt 3

 $\rightarrow$  11.03.2011

#### Aufgabe 1

Sei **k** algebraisch abgeschlossen und  $X \subset \mathbb{P}^n_{\mathbf{k}}$  eine quasi-projektive Varietät. Wir betrachten die folgende Definition:

Sei  $x \in X$ . Eine Funktion  $f: X \to \mathbf{k}$  heisst regulär in x, wenn eine offene Menge  $U \subset X$  und Polynome  $P, Q \in \mathbf{k}[x_0, \dots, x_n]$  existieren, so dass  $x \in U$ , Q ist nie null auf U und f = P/Q auf U.

Eine Funktion  $f: X \to \mathbf{k}$  heisst reguläre auf X wenn f regulär in x ist, für jede  $x \in X$ .

Zeigen Sie, dass jede solche Funktion stetig ist.

#### Aufgabe 2

Finden Sie die Punkte  $x \in X$ , wo die rationale Funktion  $f \in \mathbf{k}(X)$  regulär ist.

1. 
$$X = \mathbb{P}_{\mathbf{k}}^n$$
,  $f = x_1/x_0$ 

2. 
$$X = \{(w : x : y : z) \in \mathbb{P}^3_k \mid wx = yz\}, f = x/y$$

3. 
$$X = \{(w : x : y : z) \in \mathbb{P}^3_k \mid wx = yz\}, f = w/x$$

4. 
$$X = \{(w: x: y: z) \in \mathbb{P}^3_{\mathbf{k}} \mid w^3 + x^3 + y^3 + z^3 = 0\}, f = (w - x)/(y - z)$$

5. 
$$X = \mathbb{P}^2_{\mathbb{C}}$$
,  $f = ((x_1)^2 + (x_2)^2)/((x_0)^2 + (x_1)^2 + (x_2)^2)$ 

6. 
$$X = \mathbb{P}^2_{\mathbb{R}}$$
,  $f = ((x_1)^2 + (x_2)^2)/((x_0)^2 + (x_1)^2 + (x_2)^2)$ 

### Aufgabe 3

Seien *X*, *Y*, *Z* die folgenden projektiven algebraischen Varietäten:

$$\begin{split} X &= \left\{ (w:x:y:z) \in \mathbb{P}^3_{\mathbf{k}} \mid x^2 + y^2 = wz \right\}, \\ Y &= \left\{ (w:x:y:z) \in \mathbb{P}^3_{\mathbf{k}} \mid xy = z^2 \right\}, \\ Z &= \left\{ (w:x:y:z) \in \mathbb{P}^3_{\mathbf{k}} \mid x = 0 \right\}. \end{split}$$

Zeigen Sie, dass k(X), k(Y) und k(Z) isomorph sind.